Room for Knowledge Development: from Science Park to Innovation District

Prof. dr. Jacques van Dinteren, Innovation Area Development Partnership (IADP)[1] / Zjak Consult

Paul Jansen MSc., Innovation Area Development Partnership (IADP) / Caudata

Any services and knowledge economy includes numerous innovative companies and institutions that are engaged in research, data, knowledge and information and the acquisition and transmission thereof. For a large number of these organisations an office location is sufficient. However, when it comes to basic research – especially in terms of beta disciplines – there are often more stringent requirements. With a view to cooperation opportunities, appearance and work environment quality, some of these companies have a need for specific job site concepts that capitalize on these aspects, such as science parks and industrial campuses. Moreover, the past two decades have seen the rise of new concepts that will discussed in more detail in this paper.

 Knowledge and innovation are essential elements for most countries’ economies. With a successful innovation policy, one cannot ignore the physical environment that businesses (both large and small) require in order to successfully execute their work and ideas and generate/share knowledge, all focused on creating innovative products and services. These companies often require special buildings that may require large investments. Buildings may include offices as well as laboratories, clean rooms, small-scale (test) production units, and so on. These sites may thrive in many places, but economic researchers assume that a concentration of such buildings (and thus innovative companies) results in added value for all companies involved. Although research into these assumptions shows quite variable results, this assumed added value has resulted in a clustering of companies in numerous science parks. However, numbers are difficult to provide in the absence of a precise definition of such parks. One indicator may be the number of members of the International Association of Science Parks & Areas of Innovation (IASP; currently approx. 400.

Science Parks

When talking about the clustering of innovative companies, relatively speaking, the science park is the oldest concept. Since the rise of science parks in the early fifties, quite a few definitions have been introduced. For example, the IASP places strong emphasis on the science park as an organisation of professionals committed to exchanging information flows between companies and research institutions, promoting innovation in companies and assisting starters and spin-off businesses. However, Hansson (2004) focuses more on appearance and, on the basis of a number of definitions, concludes that science parks almost always have a university in close physical proximity, focus on knowledge and high tech companies and include a special organization that helps starters. We support the definition of the IASP. We believe science parks are primarily about stimulating innovation through well-functioning networks. Property and area development are crucial, but are nevertheless of secondary importance.

The development of science parks is a relatively recent phenomenon: of all European science parks, only 4% were established before 1980. 27% were established in the 1980s and the rest thereafter (EC, 2014). Science parks are primarily an urban or, even more so, a metropolitan phenomenon. Judging from the membership of the IASP, only 6% of parks are located outside of cities and 40% can be found in cities with well over a million inhabitants.

Two-thirds of the science parks in Europe are situated on university grounds and 17% are located no less than 5 km away from such institutions. Earlier IASP research has shown that worldwide, approx. 40% of all science parks have an on-site university or one located in their immediate vicinity. The absence of a clear link with a university may result in a relatively ineffective park (Ratinho et al., 2007). But inefficiency may also occur if the concept is not taken seriously and companies only establish themselves in such parks for their public image and appearance. Moreover, the relationship with the university is not necessarily or solely based on intense knowledge sharing between the research institute and companies based in the park. The availability of various facilities and a pool of students (interns) and graduates play a significant role and are sometimes even more important than the actual sharing of knowledge (Van Dinteren and Pfaff, 2011; EC, 2014). It shouldn’t necessarily come as a surprise that companies don’t solely focus on adjacent universities for knowledge sharing and co-innovation. When talking about crucial knowledge or information, these transcend the decision to establish oneself in a certain region (Weterings and Ponds, 2007). Nevertheless, it is these relationships between companies and knowledge institutions that distinguish science parks from regular business or office parks. Science park management teams (the fact that there are separate management teams is another factor that makes these parks unique) are often committed to these relationships and try to promote cooperation between individual companies and companies and universities. This allows for the creation of an informal network (‘local buzz’), resulting in substantial positive effects when creating innovation networks between local actors (Capello and Morrison, 2005). At the same time, one could write an entire book about the differences of opinion on this aspect.

Although the stimulation of networks, cooperation and knowledge sharing are essential to well-functioning area management, attention is equally paid to the creation of a community. One could consider the networks as communities, but when talking about communities, these are often less ‘strict’. Communities involve informal contact between employees, meeting each other at seminars, organizing sports events, concerts, and so on. And all this in a well-designed environment that promotes creativity.

The Industrial Co-innovation Park

Earlier parts of this paper have focused on the relationship between science parks and universities. At the same time, a science park may also develop itself around a different major research institution. For example, even a company may act as the pivot. In the latter case, it is better to speak of an ‘(industrial) co-innovation park’. Where the crystallization point in a science park is the university, in a co-innovation park this is a leading industrial company. Examples include the DSM Industrial & Biotech Campus (DSM, Delft, Netherlands), Kodak’s Eastman Business Park (Rochester, USA), the AUDI Ingolstadt site (Germany), the Luxembourg Automotive Campus (established around Goodyear’s Luxembourg Innovation Center and IEE s.a. sensing solutions) and Chemelot Campus (DSM, Sittard/Geleen, Netherlands).

Such developments are the result of company strategies, focused on co-innovation: the cooperation with other companies and institutions to develop innovative, creative solutions and products. Nowadays it has become harder for companies to keep up with changing technology, economy and markets by innovating solely by themselves. Technology in particular has become so specialised that nobody can afford to do everything at the highest level on their own. Cooperation with other companies, institutions and universities is required. To succeed, businesses must overcome their deep-seated fear of knowledge sharing. Fortunately, in many cases they were able to do so: these days, it has become popular to view cooperation with strategic partners as essential in the development of technological innovations.

Continuous innovations across organizational boundaries may lead a company to the idea of establishing an industrial co-innovation park on its site (or adjacent to it). Precondition is that the company must understand the dynamics of inter-organisational networks and develops – or has already developed  – skills in managing networks and facilitating network processes.

The practical possibilities for establishing a co-innovation park, in terms of available space, are often attributable to the downsizing of activities or excessive hectares of expansion reserve. Downsizing may partly occur by offshoring activities, but may also be related to changing production conditions. For example, these days the manufacturing of semiconductors requires less and less space.

So, setting up an industrial co-innovation park can be attractive if the leading company:

  • strongly advocates the idea of innovation and wants to innovate in close cooperation with its suppliers (open innovation or co-innovation);
  • is established in a region that has the characteristics that stimulate innovation,
  • the space required by other companies and is able to take care of the qualities that are asked for to make such a park a success.

This is not to say that co-innovation always asks for physical proximity of the firms and institutions involved, but being located in same park makes it easier to communicate. Moreover, companies situated on such integrated industrial areas may share the material supplies, utilities and services focusing on – for example – safety, quality, personnel and the environment.

Innovation Districts

A relatively new phenomenon in the field of innovation is the innovation district. In an innovation district, the cooperation between companies and institutions is still essential, but the concept differs in specific ways from the two aforementioned districts. First of all, these districts are often located inside urban areas, whereas most science parks are located on the outskirts of cities, in suburban locations. Moreover, innovation districts are often not newly developed, but are formed after a restructuring of an existing situation. As a result, an innovation district often has a mixture of purposes, including housing. In organisational terms, this often means a shift from the triple helix to the quadruple helix. And whereas science parks often place a strong emphasis on beta disciplines, an innovation district often takes a broader approach and thus offers room for a wide variety of creative industries and consulting firms. The link with a university may be less strong, but may partly be replaced with auxiliary branches. In addition, specialisation is sometimes not a key aspect of these districts. For example, 22@Barcelona focuses on four different clusters: Media, Information and Communication Technologies (ICT), Medical Technologies (MedTech), Energy and Design.

Similar to other districts, innovation districts have the requirements of good, dedicated management that encourages the creation of a community and networking between established companies and institutions. And compared to industrial campuses, there is often a leading company or institution (hospital, university, research institute).

Sanz (2016) describes an innovation district[2] as follows: “a designated zone with its own specific management team, whose main objectives include economic development via the promotion and attraction of selective innovative business for which specific services are provided or made available, and that may also include residential and cultural zones or facilities, or be embedded in urban spaces having such facilities, and with which the economic aspects of the area of innovation interact”.

Science parks, innovation districts and industrial innovative campuses are different concepts, especially in terms of target groups and physical form. At the same time, they show strong similarities in terms of work environment and management. Proper management – both in physical and functional terms – is a prerequisite for all three. Looking at the three districts together, they are all part of the overarching concept on an ‘innovation area’

Work Environment

Whereas during the early days of science parks the focus was often on physical development, over the years people have started to realise that science parks require a completely different approach. About two decades ago, the adage ‘brains, no bricks’ was introduced. This broke with a science park as mere property development. At the same time, this doesn’t mean that the physical environment isn’t vitally important in stimulating the process of creativity, interaction and innovation (Van Dinteren en Keeris, 2014). The importance of this is even increasing now that people are realising that an attractive (physical) environment contributes to creativity and competitiveness. Here we could make a distinction between facilities for employees and facilities for companies.

The sharing of facilities for companies, which people hope will lead to knowledge sharing and synergy, is a major reason why companies establish themselves on a campus or science park. This aspect is even more important than the actual possibilities of cooperating with the university itself, as shown by a survey among entrepreneurs established at Dutch science parks or campuses. Besides the presence of a young student population, the availability of information systems, laboratories and clean rooms is also important (Van Dinteren en Pfaff, 2011).

On the other hand, when talking about facilities for employees (including ambiance created by buildings, design and landscaping), management has the following reason for their existence: if employees enjoy their work, they simply work more effectively. If they work more effectively, this subsequently has a positive effect on productivity and creativity. Ultimately this leads to better outcomes for businesses. Over two thirds of entrepreneurs at Dutch science parks (completely) agree with the statement that, “given the increasingly tight labour market for highly educated people, it is essential that a science park offers an optimal working environment” (Van Dinteren en Pfaff, 2011). This involves extensive amenities (e.g. shops, hairdressers, restaurants, fitness centres) and an attractively landscaped park with recreational facilities (walking and running routes, meeting places, and so on). A concept such as ‘Enjoy Work’ therefore doesn’t primarily focus on the target group, but on creating a comfortable working environment (see; Van Dinteren, 2007).

Towards a Conceptual Model

Due to the very particular nature of innovation areas, establishing such areas and monitoring their quality is not easy. So what aspects are essential in creating a successful innovation district? Previous blogs focused on regional factors (which the developer has little to no control of; see blog1) and the factors that affect the park itself (see blog2). In summary:


Considering the aforementioned, then various aspects can be displayed a model as presented in Figure 1.

Figure 1: Towards a conceptual model of innovation areas

Conceptueel model ENG

As stated earlier, innovation districts must be developed in full. This conceptual model provides a tool and may function as a checklist to assess whether all ingredients are present in the development of an innovation district. If aspects are missing, then it should be immediately clear that (additional) attention must be paid to these aspects. But above all, using this model, the correlation between various programmes, actors, management, real estate, infrastructure becomes clear. By applying this model in various developments around the world, the IADP currently validates the proceeds of this model in concrete projects.

[1] The IADP is a collaboration between eight Dutch companies, active in areas including market research, concept development, urban planning, architecture, park management, financial advice and investments. See:

[2] Factually speaking, Sanz refers to an Innovation Area. We prefer to reserve this term for the different concepts combined. According to Sanz’ definition, an innovation area can be both considered at a sub-local and regional level. When it comes to the regional level, we prefer to use the term innovative region.


  • Capello Roberta and Andrea Morrison (2005), An evaluation of the effectiveness of science parks in local knowledge creation: a territorial perspective. Paper for the 5th Triple Helix Conference. Turin.
  • Dinteren, Jacques van (2007), Enjoy work! Als leidend principe. Een nieuw type werklocatie. In: Real Estate Magazine (50), pp. 24-29.
  • Dinteren, Jacques van, Debbie Pfaff (2011), Science park: innovatie of imago? In: Real Estate Magazine, no. 32, pp. 32 – 37.
  • Dinteren, Jacques van, Willem Keeris (2014), Innovatie vraagt om investeren in R&D-vastgoed. In: Real Estate Research Quaterly, april, pp. 26 – 34.
  • EC (2014), Setting up, managing and evaluating EU science and technology parks. European Commission.
  • Hansson, Finn (2004), Science parks as knowledge organisations. The ‘ba’ in action? MPP working paper no. 15. Copenhagen Business School. Copenhagen.
  • Ratinho, Tiago, Elsa Henriques and Luís Maltes (2007). Science parks and business incubators: the Portuguese case. Paper for the European Investment Bank.
  • Sanz, L. (2016), Understanding Areas of Innovation. In Anna Nilina, Josep Pique, Luis Sanz (red.): Areas of innovation in a global world. IASP (e-book).
  • Weterings, Anet, and Roderik Ponds (2007), Regionale kennisnetwerken en innovatie. Rotterdam: NAi Uitgevers publishers.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: